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The “derivation” included in the instruction manual of the electrolyte diffusion experiment is 
extremely unsatisfactory.  This hand-out clears up some of the ambiguities. 
 
Consider mass transfer due to diffusion in an isothermal, binary system of A and B.  One way to 
write Fick’s law is 
 

AABA xcD ∇−=*J          (1) 
 
where *

AJ  is the molar diffusive flux of component A.  The asterisk indicates that the diffusive 
flux is measured relative to the molar-averaged velocity.  The bold variable indicates that it is a 
vector.  In equation (1), c is the molar concentration, DAB is the diffusion coefficient of A in B, 
and xA is the mole fraction of A.  One can also write an expression for the molar diffusive flux of 
component B,  
 

BBAB xcD ∇−=*J          (2) 
 
where DBA is the diffusion coefficient of B in A.  It should be pointed out that in the general 
formulation, BAAB DD ≠ .  However, there are certain ways that one can formulate the diffusion 
process, so that the equality is observed.  Our formulation here will satisfy the equality. 

Because it is a binary mixture,  
 

1=+ BA xx .          (3) 
 
As a result, the gradients of the mole fractions are related 
 

BA xx −∇=∇ .          (4) 
 
It can also be shown for this particular choice of formulation that there is only one diffusivity, 
 

DDD BAAB == .         (5) 
 
We can rewrite equations (1) and (2) as  
 

**
BAA xcD JJ −=∇−=          (6) 

 
As a result, there is no net molar flux due to diffusion. 
 

0** =+ BA JJ           (7) 
 
We can write equation (6) in one dimension (the z-dimension) as 
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z
xcDJ A

A ∂
∂

−=* .         (8) 

 
If we assume that the total molar concentration, c, is constant, then we can rewrite equation (8) 
as  
 

z
cDJ A

A ∂
∂

−=* .          (9) 

 
but this is only true if the total molar concentration is constant.  If the total molar concentration 
is not constant, we cannot write equation (9).  In this derivation, we will assume that the total 
molar concentration is constant. Thus, equation (9) is our starting point for the following 
derivation. 
 In this analysis, we are going to approximate the gradient as  
 

12

1,2,

zz
cc

z
x AAA

−
−

≈
∂
∂ .         (10) 

 
where the subscript 1 indicates the position just on the salt-rich side of the membrane and the 
subscript 2 indicates the position just on the salt-lean side of the membrane.  In that case, 12 zz −  
is just the membrane thickness, L (which happens to unfortunately be labeled x in the lab 
manual).  We assume that the mole fraction of salt on the salt-lean side is zero through-out our 
experiment.  This is simply an assumption.  As a result,  
 

L
c

z
x AA 1,−≈
∂
∂ .          (11) 

 
We specify 1,Ac  (the default value is 2 moles/liter). 
 In equation (9), we also need to related the molar diffusive flux of A to measurable 
quantities.  Recall that a molar flux has units of moles per area per time.   
 

[ ]
timearea

molesJ A ⋅
=* .         (12) 

 
The area of mass transfer in this problem is the cross-sectional area of the cylindrical capillary in 
the membrane multiplied by the number of capillaries. 
 

Ndarea
4

2π
= ,          (13) 

 
where d is the diameter of the capillary and N is the number of capillaries.  What we now need is 
the molar flow rate [moles/time].  However, we measure the conductivity, k.  We have to first 
assume that our measured conductivity is linearly proportional to the salt concentration, 
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saltM cCk = ,           (14) 

 
where CM is a proportionality constant.  Solving for the salt concentration, we have 
 

k
C

c
M

salt
1

= .           (15) 

 
We need the molar flowrate.  If we write a salt balance on the salt-lean side of the membrane, we 
have 
 

generationoutinonaccumulati +−= .       (16) 
 
There is no generation term and there is no out term.  Our in term is simply the moles/time 
entering the salt-lean side from the membrane.  Our accumulation term is simply  
 

t
cVonaccumulati salt

∂
∂

= .         (17) 

 
Therefore our balance is simply 
 

in
t

cV salt =
∂
∂ .           (18) 

 
We differentiate equation (15) and substitute it into equation (18). 
 

in
t
k

C
V

M

=
∂
∂1 .          (19) 

 
Our flux is thus 
 

Ndt
k

C
V

area
inJ

M
A 2
* 41

π∂
∂

== .       (20) 

 
We substitute equations (11) and (20) into equation (9). 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

π∂
∂

L
c

D
Ndt

k
C

V A

M

1,
2

41 .       (21) 

 
Solving for D, we have  
 

t
k

NdCc
LVD
MA ∂

∂
π

= 2
1,

4 .         (22) 
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We estimate 
t
k
∂
∂  by computing the slope of a plot of conductivity versus time.  Then we know 

everything on the right-hand-side of equation (22) and we use equation (22) to estimate the 
diffusivity.  In using equation (22), I caution you to make sure that all your units cancel.  Your 
diffusivity should have units of area per time, e.g. m2/s.  In order to do the calculation correctly, 
you will have to convert all quantities to, for example, SI units.  This means that concentrations 
will have to be expressed in moles/m3 rather than moles/liter. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 


